Rapid extraction of image texture by co-occurrence using a hybrid data structure

نویسندگان

  • David A. Clausi
  • Yongping Zhao
چکیده

Calculation of co-occurrence probabilities is a popular method for determining texture features within remotely sensed digital imagery. Typically, the co-occurrence features are calculated by using a grey level co-occurrence matrix (GLCM) to store the co-occurring probabilities. Statistics are applied to the probabilities in the GLCM to generate the texture features. This method is computationally intensive since the matrix is usually sparse leading to many unnecessary calculations involving zero probabilities when applying the statistics. An improvement on the GLCM method is to utilize a grey level co-occurrence linked list (GLCLL) to store only the non-zero co-occurring probabilities. The GLCLL suffers since, to achieve preferred computational speeds, the list should be sorted. An improvement on the GLCLL is to utilize a grey level co-occurrence hybrid structure (GLCHS) based on an integrated hash table and linked list approach. Texture features obtained using this technique are identical to those obtained using the GLCM and GLCLL. The GLCHS method is implemented using the C language in a Unix environment. Based on a Brodatz test image, the GLCHS method is demonstrated to be a superior technique when compared across various window sizes and grey level quantizations. The GLCHS method required, on average, 33.4% (s 1⁄4 3:08%) of the computational time required by the GLCLL. Significant computational gains are made using the GLCHS method. r 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Content Based Image Retrieval for Mobile Systems

This paper proposes, a hybrid approach employing texture and colour feature is investigated. A modified approach for performing texture based feature extraction by gray level co-occurrence matrix and colour based feature extraction by colour cooccurrence vector. The Euclidean distance classifier is used for finding the similarity measures between the query image and the database image. In our p...

متن کامل

A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm

To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature ...

متن کامل

Implementing Texture Feature Extraction Algorithms on FPGA

Faculty of Electrical Engineering, Mathematics and Computer Science CE-MS-2009-25 Feature extraction is a key function in various image processing applications. A feature is an image characteristic that can capture certain visual property of the image. Texture is an important feature of many image types, which is the pattern of information or arrangement of the structure found in a picture. Tex...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001